Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
## Kamchatka M8.8 Earthquake and Tsunamis Reach Across the Pacific to NSF’s OOI Regional Cabled Array Deborah Kelley1, Joe Duprey1, Wendi Ruef1, and W. Chadwick2 1University of Washington, 2Oregon State University On July 29 at 23:24:52 UTC, a powerful magnitude 8.8 earthquake struck the Kamchatka Peninsula in Russia, unleashing seismic energy and a tsunami that surged across the Pacific Ocean. This extraordinary event was captured in remarkable detail by the NSF Ocean Observatories Initiative’s (OOI) Regional Cabled Array—a seafloor observatory located offshore Oregon and Washington and one of the world’s most advanced underwater monitoring networks, with over 150 instruments transmitting real-time data to shore at the speed of light. At 23:33:15, the seismic waves from the Kamchatka earthquake reached Axial Seamount, located nearly 300 miles west of the Oregon coast and almost a mile beneath the ocean’s surface, having crossed the entire Pacific in just nine minutes. The vibrations were so intense they rattled a seafloor instrument continuously for over four hours (a,b). Then, at 06:03:00 UTC on July 30—6 hours and 30 minutes after the quake—the first tsunami waves arrived at Axial Seamount (c). Ultra-sensitive pressure sensor on bottom pressure tilt instruments picked up the waves with astonishing clarity. Lower-resolution sensors across the array also tracked the tsunami’s journey toward the UW west coast. Racing at speeds of 270 miles per hour, the first wave swept across the Juan de Fuca Plate and over the Cascadia Subduction Zone, eventually reaching seafloor monitoring instruments at the Oregon Shelf site just 14 miles offshore from Newport, Oregon. The OOI Regional Cabled Array instruments showed that the Pacific Ocean reverberated with smaller waves for several days after the first tsunami waves arrived—echoes of one of the most powerful seismic events ever recorded. This event highlights not only the dynamic nature of our planet and the seismic and tsunami hazards that we have to be prepared for in the Pacific Northwest, but also the incredible capability of modern science to observe and understand these kinds of events—in real time from deep beneath the ocean’s surface, and the value of such monitoring to coastal communities. ## Bottom Pressure and Tilt Meter Notes BOTPT LILY tiltmeter data (csvs) are curated by William Chadwick. The tilt units are microradians, or µrad. BOTPT-MJ03F-BPR-29July-to-01Aug2025-15sec.csv Date/Time, Pressure (psi) with tides, De-tided Depth (m) - from 29 July @ 00:00 to 01 August @ 00:00, and a record every 15 seconds (from the NANO bottom pressure sensor) BOTPT-MJ03F-LILY-tilt-data-29-30July2025-01sec.csv Date/Time, X-tilt, Y-tilt - from 29 July @ 00:00 to 30 July @ 23:13, and a record every 1 second (from the LILY tiltmeter) ## Where to find Additional Data Additional data from the included sensors prior to and after the event, or from OOI's many co-located sensors can be obtained through the OOI data portal https://ooinet.oceanobservatories.org/ , the OOI data explorer https://dataexplorer.oceanobservatories.org/ or OOI's M2M API service https://oceanobservatories.org/m2m/. ## Contact Information jduprey@uw.edu This material is based upon work supported by the Ocean Observatories Initiative (OOI), a major facility fully funded by the US National Science Foundation under Cooperative Agreement No. 2244833, and the Woods Hole Oceanographic Institution OOI Program Office.more » « less
-
Doi, Hideyuki (Ed.)Non-native species have the potential to cause ecological and economic harm to coastal and estuarine ecosystems. Understanding which habitat types are most vulnerable to biological invasions, where invasions originate, and the vectors by which they arrive can help direct limited resources to prevent or mitigate ecological and socio-economic harm. Information about the occurrence of non-native species can help guide interventions at all stages of invasion, from first introduction, to naturalization and invasion. However, monitoring at relevant scales requires considerable investment of time, resources, and taxonomic expertise. Environmental DNA (eDNA) metabarcoding methods sample coastal ecosystems at broad spatial and temporal scales to augment established monitoring methods. We use COI mtDNA eDNA sampling to survey a diverse assemblage of species across distinct habitats in the Salish Sea in Washington State, USA, and classify each as non-native, native, or indeterminate in origin. The non-native species detected include both well-documented invaders and species not previously reported within the Salish Sea. We find a non-native assemblage dominated by shellfish and algae with native ranges in the temperate western Pacific, and find more-retentive estuarine habitats to be invaded at far higher levels than better-flushed rocky shores. Furthermore, we find an increase in invasion level with higher water temperatures in spring and summer across habitat types. This analysis contributes to a growing understanding of the biotic and abiotic factors that influence invasion level, and underscores the utility of eDNA surveys to monitor biological invasions and to better understand the factors that drive these invasions.more » « less
An official website of the United States government
